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Abstract—In this paper, the robotic manipulator trajectory tracking 
control with terminal sliding mode control (TSMC) is investigated. 
The controller ensures continuous finite-time control in presence of 
uncertainties. Design of terminal sliding mode controller for 
trajectory tracking control of 3dof robotic manipulator in presence of 
both matched and mismatched uncertainties is presented in this work. 
The controller is robust against bounded uncertainties and external 
disturbances and guaranties finite time convergence of error 
ensuring satisfactory stabilization as well as tracking performances.  
 
Index Terms: Robotic manipulator; mismatched uncertainties; 
terminal sliding mode control; finite time convergence. 

1. INTRODUCTION 

Robotic manipulators are highly nonlinear multiple input 
multiple output (MIMO) systems with strongly coupled joints. 
This makes the precise trajectory tracking control of robotic 
manipulators a very challenging task. Degree of complexity 
increases with higher degree of freedom(dof) manipulators. 
Sliding mode control(SMC)[2,7,8,9] is one of the most 
appropriate approach for control of robotic manipulators. It 
has attracted signifcant amount of interest due to its fast global 
convergence, simplicity of implementation, order reduction, 
high robustness to external disturbances and insensitivity to 
model errors and system parameter variations. Control of 
robotic manipulators using sliding mode control has a rather 
long history. Numerous variations have been proposed in the 
literature[1,3,4,5,6,10]. In conventional sliding mode 
switching manifolds are usually linear hyper planes which 
guarantee asymptotic stability[2,7,8,9]. However for faster 
error convergence, the sliding mode controller parameters 
should be chosen such that the poles of the sliding mode 
dynamics are far from the origin on the left half of the s-plane. 
But this will cause increase of gain of the controller which 
may cause severe chattering on the sliding motion and thus 
deteriorates the system performance. To solve this problem of 
global asymptotic stability, terminal sliding mode control 
(TSMC) scheme has been developed [3,4,5,6] to achieve finite 
time stabilization. The TSM Controller was originated from 
the concept, terminal attractors [4]. The TSMC was first used 

in [3] for finite time sliding mode control design for robotic 
manipulators. It was then extended to different control 
problems of SISO and MIMO systems including robotics 
[3,5,6,10,11,12,15-21]. But all these literatures limited to 
trajectory tracking control of 2dof manipulators only. This 
work illustrates tracking control of 3dof robotic manipulators 
using TSMC in presence of both matched and mismatched 
uncertainties. The controller performance is satisfactory which 
ensures faster and higher-precision tracking performance in 
presence of uncertainties and guaranties finite time 
convergence of error. The paper is organized as follows. In 
Section II the problem is formulated. The Terminal sliding 
mode controller is designed in Section III. The stability 
analysis of the controlled system is provided in Section IV. 
Simulation results for trajectory tracking control of a 3 degrees 
of freedom serial robotic manipulator are shown in Section V. 
Conclusion is drawn in Section VI. 

2. PROBLEM FORMULATION 

The dynamics of an n-link rigid robotic manipulator can be 
expressed by second order nonlinear vector differential 
equations defined in the joint space of the manipulator (Spong 
and Vidyasagar,1989 [13]) as given below 

( ) ( , ) ( )M q q C q q q G q       (1) 

where ( ) n nM q R  is the mass matrix; ( , ) n nC q q R  is the 

vector including centrifugal and Coriolis forces; ( ) nG q R is 

the gravity force vector; 
nR   denotes the joint torque vector 

nq R is the joint angle vector and q and q  are the angular 
velocity and the angular acceleration of the joints respectively. 

The robotic manipulator system (1) has the following 
properties. 

Property I : 
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The inertia matrix ( )M q is symmetric and positive definite for 

all 
nq R i.e, ( ) ( )TM q M q and ( ) 0M q   and it is upper 

and lower bounded i.e., 

1 2

1 2

( )

( )

I M q I

m M q m

  

 
  (2) 

where 1 and 2 are scalars that may be computed for 

any given arm. Likewise, the inverse of the inertia matrix 

is bounded since 

1

2 1

1 1
( )I M q I

 
   (3) 

Property II : 

Matrix ( ) 2 ( , )M q C q q  is a skew symmetric matrix. i.e., 

1
( ) 2 ( , ) 0, 0

2
Tx M q C q q x x      

   (4) 

Assumption 1: All the joints of the robotic manipulator are 
revolute. This assumption makes Property 1 valid. 

Assumption 2: The reference trajectory defined as 
n

dq R and 

its time derivatives dq and dq are continuous and bounded. 

3. CONTINUOUS TERMINAL SLIDING MODE 
CONTROLLER DESIGN 

The Continuous TSMC as proposed by S.Yu, X.Yu, B.S. 

and Z. man [2005] [6] is as explained below. 

The TSM and Fast TSM is given by the following first order 
nonlinear differential equations 

( ) 0

( ) 0

s x x sign x

s x x x sign x







 

  

   




 (5) 

respectively, where , , 0 , 0 1x R       . 

The equilibrium point 0x  of the above equation (5) is 
globally finite-time stable, i.e., for any given initial condition 

(0) ox x , the system state converges to 0x   in finite time 

T as given below for TSM and FTSM 

1

1

1

(1 )

1
ln

(1 )

o

o

T x

x
T





 

 
  













  (6) 

respectively and stays there forever, i.e. 0x  for t T . 

An extended Lyapunov description of finite time stability 

can be given with the form of fast TSM as 

( ) ( ) ( ) 0, 0 1V x V x V x        (7) 

and the settling time can be given by 

1 ( )1
ln

(1 )
oV x

T
 

  

 



   (8) 

It is clear that above equations (7) and (8) mean exponential 
stability as well as faster finite-time stability. 

And the NTSM can be expressed as 

( ) 0s x x sign x
       (9) 

where 0  , and 1 2   . It is continuous and 

differentiable although the absolute value and signum 
operators are involved. Its first derivative can be expressed as 

1
s x x x

         (10) 

Let 
n

dq R be a twice differentiable desired trajectory, 

and define the tracking error as de q q  . The control 

objective is to find a feedback control   such that the 

manipulator output q  tracks the desired trajectory dq
 in finite 

time e.g. to make the tracking error zero. 

The following notions are introduced for simplicity of 
expression in developing TSM (Haimo 1986)[14]: 

1

1

1

1

1

1 1

[ ,.................., ]

[ ,.............., ]

( ) [ ( ),..........., ( )]

n

n

n

T
n

T
n

T
n n

y y y

y y y

sig y y sign y y sign y



  

 







 

Hence, the Nonsingular TSM as from (9) can be defined as 

( ) 0s e sig e       (11) 

Where
1[ , ......, ]T n

ns s s  , 1( ,............, )ndiag    and 

11 ,.........., 2n    

1 1 1

1 1

1

( ,......, )

( ( ) ( ( , ) ( )) )

n

n n

d

s e diag e e

M q C q q q G q q

   



 



 

  

   

  
 (12) 

The conventional TSM control can be designed as a 
discontinuous control law according to a discontinuous 
reaching law such as 
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( )s ksign s    (13) 

where 1( ,........, )nk diag k k , 1,........,i n  and 

1( ) [ ( ),......, ( )]T
nsign s sign s sign s .A discontinuous 

TSM control can be designed as 

21 1

( , ) ( )

( )( ( ) )d

C q q q G q

M q ksign s q e




   

 

  

 

 
 (14) 

Retaining the property of finite-time reaching of TSM but 
eliminating discontinuities,[6] has proposed a kind of 

continuous fast-TSM-type reaching condition as 

1 2 ( )s k s k sig s     (15) 

Where
1 11 1( ,........, )nk diag k k , 

2 21 2( , ........, )nk diag k k , 

1 2 1, 0, 0 ........ 1i i nk k         . The inverse 

dynamics controller is designed as 

21 1
1 2

( , ) ( )

( )( ( ) )d

C q q q G q

M q k s k sig s q e




   

 

   

 

 
 (16) 

This control law is continuous and therefore is chatteringfree. 
It does not involve any negative fractional power, hence it is 
also singularity-free. 

4. STABILITY ANALYSIS 

The Lyapunov function is considered as 1

2
TV s s . By 

differentiating V with respect to time, 

1

1

1

1 1

1 2

[ ( ) ]

[ ( )

( ( ) ( ( , ) ( )) )]

[ ( ) ( ) ( ) ]

( )

0

T

T

T

d

T

T T
x y

V s s

s e diag e e

s e diag e

M q C q q q G q q

s diag e k s diag e k sig s

s K s s K sig s





  









 







 



 

 

  

  

  



 

  

 

  

 

 

(17)

 

Where 1

1( ) n n
xK diag e k R

     and 

1

2( ) n n
yK diag e k R

     are positive definite diagonal 

matrices. The 0V   implies the stability in Lypunov sence. 

5. SIMULATION RESULTS 

A planar, 3dof manipulator with revolute joints, taken from 
[10], is used here to demonstrate the given control 

approach. The manipulator and the associated variables are 
depicted in Figure 1 . 

The model of this robot is simulated by using MATLAB 

Simulink platform with fixed step size of 0.001. 

The robot model is defined by the following equation (Neila 
Mezghani Ben Romdhane and Tarak Damak 2015)[10] 

1 1 1 1 111 12 13

21 22 23 2 2 2 2 2

31 32 33 3 3 3 3 3

q C G dM M M

M M M q C G d

M M M q C G d





          
                        

                      







 (19) 

11 1 2 2 2 3 3 3 1

12 1 2 2 2 3 3 3 2

22 3 3 2

13 2 2 3 3 3 3

23 3 3 3

33 3

2 cos( ) 2 cos( ) 2 cos( )

cos( ) cos( ) 2 cos( )

2 cos( )

cos( ) cos( )

cos( )

M b q b q q b q a

M b q b q q b q a

M b q a

M b q q b q a

M a b q

M a

    
    

 

   

 


 

2 2 2 2 2 2
1 1 1 1 2 2 1 2 3 3 1 2 3

2 2 2
2 2 2 2 3 2 3

2
3 3 3 3

( ) ( )

( )

c c c

c c

c

a J m L J m L L J m L L L

a J m L m L L

a J m L

        

   

 

 

1 1 2 1 2 2 2 1 2 3

2 3 2 3 3 3 1 2 3 3

2 2
2 1 1 2 2 1 2 3 2 1 2 3 3

2 2
3 2 1 2 3 3 1 2 3

(2 )sin( ) (2 )

( )sin( ) (2 )sin( )

sin( ) sin( ) (2 ) sin( )

sin( ) ( ) sin( )

C b q q q q b q q q

q q q q b q q q q q

C b q q b q q q b q q q q

C b q q q b q q q



     

    

      

    

     

     

    

  

 

1 2 1 2 3 1 2

2 3 1 3

3 3 2 3

c

c

c

b m L L m L L

b m L L

b m L L

 





 

1 1 1 2 1 2 3 1 2 3

2 1 1 2 3 1 2 3

3 3 1 2 3

cos( ) cos( ) cos( )

cos( ) cos( )

cos( )

G k q k q q k q q q

G k q q k q q q

G k q q q

     
    

  

 

1 1 1 2 1 3 1

2 2 2 3 2

3 3 3

( )

( )

c

c

c

k m L m L m L g

k m L m L g

k m L g

  

 



 

Here 1 2 3( ) [ ( ), ( ), ( )]Tq t q t q t q t  is the angular position 

vector where 1 ( )q t , 2( )q t and 3( )q t are the angular positions 

of joints 1,2 and 3. ( )M q  is the inertia matrix, ( , )C q q  is the 

centripetal Coriolis matrix, ( )G q  is the gravity vector and 

1 2 3[ , , ]T     is the applied torque. Friction terms are 

ignored. 
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Fig. 1: Three-link manipulator with link lengths L1 and L2 , L3 
and link masses m1 and m2 and m3 [10]. 

TABLE I: Physical parameters of the three-link robotic 
manipulator [10] 

Symbol Definition Value 
L1 
L2 
Lc1 
Lc2 
Lc3 
J1 
J2 
J3 
m1 
m2 
m3 
g 

Length of the first link 
Length of the second link 
Distance to the link COM 
Distance to the link COM 
Distance to the link COM 
Moment of inertia of the D.C. motor 
Moment of inertia of the D.C. motor 
Moment of inertia of the D.C. motor 
Nominal Mass of the link 1 
Nominal Mass of the link 2 
Nominal Mass of the link 3 
Gravitational constant 

0.5m 
0.5m 
0.25m 
0.35m 
0.15m 
0.12kgm2 

0.25kgm2 

0.3kgm2 

0.5kg 
1kg 
0.2kg 
9.81m/s2 

 

Table I lists the physical parameters of the manipulator 
considered in the simulation study[10]. 
Each joint of the robot arm is required to track the time 
varying reference trajectory 0.2 2 sin(2 )dq t  . Let us 

suppose that we have an uncertainty on masses of the 

order ±10% and an uniform random noise having limits 
±0.0001 is added to the measurements of position and speed of 
the joints. The controller performance is studied 

when the robotic arm is affected by these mismatched 
uncertainties. 

The parameters selected for the terminal sliding mode 
controller (16) are (3, 3, 3)diag  , 1 .5  , 

1 2 (35, 35, 35)k k diag  and 0 .9  . 

The simulation results are shown in APPENDIX I. From 

the simulation results it is observed that a continuous control 
action is obtained which is able to keep the system on the 
desired trajectory despite the uncertainties present in the 
system. It is also observed that the tracking performance is 
satisfactory with small rise time. Moreover, the sliding surface 
and error convergence is also satisfactory. To discuss the 
controller performance the output performance parameter 
integrated absolute error (IAE) is calculated from the results 
and is tabulated in table II. 

TABLE II: Controller performance 

Controller Performance 
Joint IAE 
Joint1 0.05503 
Joint2 0.05513 

Joint3  0.05502 

6. CONCLUSIONS 

A continuous nonsingular terminal sliding mode controller is 
presented in this work. The proposed controller exhibits 
satisfactory tracking performance for the higher degrees of 
freedom robotic arm even in presence of mismatched 
uncertainties caused by parametric change and sensor noise. 
Simulation studies conducted on a 3 dof robotic arm shows 
effectiveness of the proposed controller. The controller is 
chattering free and singularity free. 
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